Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia.
نویسندگان
چکیده
We tested the hypothesis that vagal withdrawal plays a role in the rapid (phase I) cardiopulmonary response to exercise. To this aim, in five men (24.6+/-3.4 yr, 82.1+/-13.7 kg, maximal aerobic power 330+/-67 W), we determined beat-by-beat cardiac output (Q), oxygen delivery (QaO2), and breath-by-breath lung oxygen uptake (VO2) at light exercise (50 and 100 W) in normoxia and acute hypoxia (fraction of inspired O2=0.11), because the latter reduces resting vagal activity. We computed Q from stroke volume (Qst, by model flow) and heart rate (fH, electrocardiography), and QaO2 from Q and arterial O2 concentration. Double exponentials were fitted to the data. In hypoxia compared with normoxia, steady-state fH and Q were higher, and Qst and VO2 were unchanged. QaO2 was unchanged at rest and lower at exercise. During transients, amplitude of phase I (A1) for VO2 was unchanged. For fH, Q and QaO2, A1 was lower. Phase I time constant (tau1) for QaO2 and VO2 was unchanged. The same was the case for Q at 100 W and for fH at 50 W. Qst kinetics were unaffected. In conclusion, the results do not fully support the hypothesis that vagal withdrawal determines phase I, because it was not completely suppressed. Although we can attribute the decrease in A1 of fH to a diminished degree of vagal withdrawal in hypoxia, this is not so for Qst. Thus the dual origin of the phase I of Q and QaO2, neural (vagal) and mechanical (venous return increase by muscle pump action), would rather be confirmed.
منابع مشابه
O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m.
Whole body O2 uptake (VO2) during maximal and submaximal exercise has been shown to be preserved in the setting of beta-adrenergic blockade at high altitude, despite marked reductions in heart rate during exercise. An increase in stroke volume at high altitude has been suggested as the mechanism that preserves systemic O2 delivery (blood flow x arterial O2 content) and thereby maintains VO2 at ...
متن کاملDeterminants of maximal oxygen uptake in severe acute hypoxia.
To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced ...
متن کاملEffects of various acute hypoxic conditions on metabolic parameters and cardiac function during exercise and recovery
PURPOSE Evaluation of metabolic parameters and cardiac function is important to determine the decrease in aerobic exercise capacity under hypoxic conditions. However, the variations in metabolic parameters and cardiac function and the reasons for the decrease in aerobic exercise capacity under hypoxic conditions have not been clearly explained. The purpose of this study was to compare the respo...
متن کاملDeterminant factors of the decrease in aerobic performance in moderate acute hypoxia in women endurance athletes.
The purpose of this study was to evaluate the limiting factors of maximal aerobic performance in endurance trained (TW) and sedentary (UW) women. Subjects performed four incremental tests on a cycle ergometer at sea level and in normobaric hypoxia corresponding to 1000, 2500 and 4500 m. Maximal oxygen uptake decrement (Delta VO2 max) was larger in TW at each altitude. Maximal heart rate and ven...
متن کاملCardiovascular responses to dynamic exercise with acute anemia in humans.
We hypothesized that reducing arterial O2 content ([Formula: see text]) by lowering the hemoglobin concentration ([Hb]) would result in a higher blood flow, as observed with a low [Formula: see text], and maintenance of O2 delivery. Seven young healthy men were studied twice, at rest and during two-legged submaximal and peak dynamic knee extensor exercise in a control condition (mean control [H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 2 شماره
صفحات -
تاریخ انتشار 2008